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ABSTRACT
Online micro-video recommender systems aim to address the in-
formation explosion of micro-videos and make the personalized
recommendation for users. However, the existing methods still have
some limitations in learning representative user interests, since the
multi-scale time effects, user interest group modeling, and false pos-
itive interactions are not taken into consideration. In view of this,
we propose an end-to-end Multi-scale Time-aware user Interest
modeling Network (MTIN). In particular, we first present an inter-
est group routing algorithm to generate fine-grained user interest
groups based on user’s interaction sequence. Afterwards, to explore
multi-scale time effects on user interests, we design a time-aware
mask network and distill multiple temporal information by several
parallel temporal masks. And then an interest mask network is
introduced to aggregate fine-grained interest groups and gener-
ate the final user interest representation. At last, in the prediction
unit, the user representation and micro-video candidates are fed
into a deep neural network (DNN) for predictions. To demonstrate
the effectiveness of our method, we conduct experiments on two
publicly available datasets, and the experimental results demon-
strate that our proposed model achieves substantial gains over the
state-of-the-art methods.
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1 INTRODUCTION
In recent years, the recommender system has played an increasingly
important role in micro-video sharing platforms, such as Tiktok,
Kuai, and Instagram. This is attributed to the powerful ability of
the recommender system to reduce user retrieval time and allevi-
ate information overload. To pursue a high-quality micro-video
recommender, it is crucial to discover user interests and provide
micro-videos according to their tastes. A statistical report from
Jiguang company1 shows that 73.9% of 113 million platform users
express as many as 20 types of interests. As such, in order to pro-
vide better user experience, it is essential to further explore their
personalized interests.

With the rapid development of deep learning technology, many
efforts have been devoted to obtaining personalized user interests
in the field of recommendation [12, 17, 19, 21, 35, 36, 38, 42, 43],
especially the combination of recurrent neural networks (RNN)
[8, 22] and attention mechanisms [4, 30], which has made great
progress in capturing long-term and short-term user preferences
and learning diverse interests. For example, Chen et al. [2] proposed
a hierarchical attention network at category-level and item-level
for long-term and short-term interest modeling in micro-video
click-through prediction. Li et al. [19] utilized a multi-interest ex-
tractor layer to capture diverse user interests and built a label-aware
attention layer for personalized recommendation.

Despite their remarkable performance, there are still some issues
untouched, which are summarized as follows:

• Multi-scale time effects. Previous methods usually consider
that the effect of micro-videos on user interest modeling de-
creases over time implicitly, which is captured by RNN [8, 10, 11]
or learned from timestamp features [20, 30]. However, they ig-
nore the case that the importance of micro-videos decreases over
time varies from user to user, that is to say, for different users,

1https://www.jiguang.cn/reports/43.
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Figure 1: An illustration of personalized interest groups for
different users.

time has various effects on their interests. Therefore, it is neces-
sary to explicitly model multi-scale time effects on user interest
modeling for micro-video recommendation.
• User interest groupmodeling. As shown in Figure 1, different
users have different interest groups and the interest groups of one
user may also be diverse. However, existing methods commonly
focus on learning the user interest representation directly from
micro-video features without grouping [4, 8, 15, 25]. In this way,
the large groups with a majority of historical micro-videos domi-
nate the user interests, and the micro-videos in small groups are
rarely recommended. Inspired by this, we argue that fine-grained
grouping for micro-videos is important to capture diverse user
interests.
• False-positive interactions. Considering that the explicit feed-
back (e.g., rating, review) is not always available, implicit feed-
back, such as clicks and browsing, tends to be used to train the
recommendation model [2, 33, 34, 38]. However, for implicit feed-
back, some micro-videos clicked by the user may not indicate the
user’s real interests, which is named as false-positive interactions.
For example, a user watches a micro-video shared by her/his
friends, while she/he has no interest in this micro-video. We
argue that the false-positive interactions harm the user interest
modeling, while how to deal with the detrimental effects has not
been considered in previous methods.
Indeed, it is tough to address the aforementioned problems due

to the following challenges: 1) Given that it is already non-trivial to
model the temporal information in explicit ways, explicitly captur-
ing the multi-scale time effects in user interest modeling becomes
more difficult. 2) Each user has her/his personalized interests, so it
is non-trivial to learn fine-grained interests of different users and
distill their interest groups. And 3) different from explicit feedback,
implicit feedback has noises [13] and does not always indicate the
actual user interests, which poses a huge challenge in distinguishing
false-positive interactions and clean interactions.

To overcome these challenges, we present an end-to-end Multi-
scale Time-aware user InterestmodelingNetwork (MTIN), as shown
in Figure 2. It consists of three units — the interest group routing
unit, the item-level and group-level interest extraction unit, and the
prediction unit. Specifically, 1) in the first unit, we propose an inter-
est group routing algorithm, which is used to generate user interest
groups based on the interaction sequence. Meanwhile, we introduce
a discount factor to reduce the detrimental effects of false-positive

interactions. 2) In the second unit, to explore multi-scale time ef-
fects on user interests, we design a temporal mask network which
takes the results of the interest group routing unit as input and
distills multi-scale time effects by several parallel temporal masks.
The output group representations are adopted to the interest mask
network, which is used to aggregate fine-grained interest groups
and generate the final user interest representation. And 3) in the
third unit, the user interest representation and micro-video can-
didates are fed into a deep neural network (DNN) for predictions.
To demonstrate our proposed model, we conduct extensive experi-
ments on two publicly available datasets. The results show that our
proposed model outperforms several state-of-the-art baselines.

The main contributions are summarized as follows:
• To explicitly exploit the multi-scale time effects in user inter-
est modeling, we develop a parallel temporal mask network,
which is able to learn multiple temporal information for
micro-video recommendation.
• To learn diverse user interests, we propose an interest group
routing algorithm,which is capable of generating fine-grained
user interest groups. In addition, we introduce an interest
mask network to aggregate interest groups and distill the
final user interest representation.
• We conduct extensive experiments on two publicly available
datasets, verifying the effectiveness of our proposed MTIN
over the state-of-the-art methods. In addition, we release our
codes and involved parameters2 to benefit other researchers.

2 RELATEDWORK
In this section, we review the methods related to our research,
including video recommendation and user interest modeling.

2.1 Video Recommendation
The existing methods of video recommendation can be divided into
three categories: collaborative filtering methods [9, 31, 32], content-
based methods [3, 5, 6, 33, 37] and hybrid approaches [1, 41]. Col-
laborative filtering (CF) is widely used in recommender systems,
which models user interests by exploring user-item interactions
with the assumption that people with similar interests tend to make
similar choices. For example, Huang et al. [15] developed a real-
time matrix factorization based CF algorithm with an adjustable
online updating strategy for video recommendation. However, CF
methods suffer from the problem of cold start and data sparsity
[7, 25, 31]. To tackle this issue, some researchers adopted the meth-
ods of integrating user/item content representations into feature
extractions [23, 24, 26, 27], i.e., content-based filtering. For example,
Cui et al. [6] studied the video representations with social attributes
and users with content attributes by harvesting video propagation
traces among users-item interactions. As for hybrid approaches,
researchers combined both CF and content-based methods for rec-
ommendation. For instance, Chen et al. [1] employed an attention
mechanism in CF to address the item-level and component-level
implicit feedback in multimedia recommendation. Despite their
remarkable performance, they usually directly learn user interests
from item features without grouping, limiting the exploration of
fine-grained user interests. Differently, our model explores user
2https://anonymous-1429.wixsite.com/anonymous.
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Figure 2: Illustration of our proposed multi-scale time-aware user interest modeling network for micro-video recommenda-
tion. It consists of three units: the interest group routing unit, the item-level and group-level interest extraction unit, and the
prediction unit.

interests via an interest group routing algorithm to capture fine-
grained user interest groups.

2.2 User Interest Modeling
User interest modeling is a common issue in recommender sys-
tems. Existing methods learn user interest representations from
user profiles [5, 34], social relationships among users [16, 29], and
user-item interactions [14, 39]. For example, Covington et al. [5]
concatenated the discretized attributes (e.g., age, gender) as original
inputs of the neural network for video recommendation. Tran et
al. [29] explored user interests by exploring user-user interactions
based on sub-attention network for group recommendation. Zhou
et al. [43] designed an attention network to obtain varying rep-
resentations of user interests which depends on different target
items. However, these methods limit to explore multi-scale time
effects of user interests, while ignoring the detrimental effects of
false-positive interactions. In light of this, we utilize the multi-scale
temporal masks to explore multiple time effects, and introduce a
discount factor in the interest group routing algorithm to deal with
false-positive interactions.

3 PROBLEM DEFINITION
A micro-video recommender system contains two sets of entities:
users and micro-videos. Let U = {𝑢1, 𝑢2, 𝑢3, ..., 𝑢 |U |} denote the
user set and I = {𝑖1, 𝑖2, 𝑖3, ..., 𝑖 |I |} denote the micro-video set,
where |U| and |I | denote the number of users in setU and items
in set I, respectively. Each interaction between the user and the
micro-video is associated with a timestamp, which can be formu-
lated as a triplet 𝑖 (𝑢)𝑡 = ⟨𝑢, 𝑖, 𝑡⟩, where 𝑢 ∈ U, 𝑖 ∈ I, and 𝑡 rep-
resents the timestamp when the interaction happens. By sorting
the interaction records in ascending order according to the times-
tamp, an interaction sequence for user 𝑢 can be represented as
H𝑢 = {𝑖 (𝑢)𝑡1

, ..., 𝑖
(𝑢)
𝑡 𝑗

, ..., 𝑖
(𝑢)
𝑡𝐿
}, where 𝑖 (𝑢)𝑡 𝑗

∈ I is the micro-video in-
teracted by user 𝑢 at time 𝑡 𝑗 and 𝐿 is the length of the interaction

sequence. Furthermore, the interaction sequenceH𝑢 is divided into
H𝑝𝑜𝑠 and H𝑛𝑒𝑔 , which respectively represent the micro-videos
clicked by the user and the ones whose thumbnails browsed by the
user but not clicked.

Formally, the micro-video recommendation task can be defined
as follows:

Input: The user setU, the interaction sequenceH𝑢 of each user
𝑢, and the candidate micro-video 𝑖 (𝑢)𝑡𝐿+1

.

Output: The probability 𝑃𝑟𝑜𝑏

(
𝑖
(𝑢)
𝑡𝐿+1

)
that the new micro-video

will be clicked by user 𝑢, which is formulated as:

𝑃𝑟𝑜𝑏

(
𝑖
(𝑢)
𝑡𝐿+1

)
= F

(
𝑢,H𝑢 , 𝑖

(𝑢)
𝑡𝐿+1

)
, (1)

where F : I ↦→ R denotes the prediction function.

4 OUR PROPOSED MODEL
In this section, we introduce the architecture of our proposed model.
As shown in Figure 2, our model consists of three units — the
interest group routing unit, the item-level and group-level interest
extraction unit, and the prediction unit. To be more specific, the
first unit is designed for generating user interest groups based on
the interaction sequence. The second unit is proposed to leverage
fine-grained interest groups and distill user interest representations.
And the third unit aims to predict the click probabilities of micro-
video candidates. In the following parts, we describe each unit in
detail.

4.1 Interest Group Routing Unit
The interest group routing process in this unit consists of two steps:
1) calculating item-group matching scores, and 2) assigning interest
groups for micro-videos.

4.1.1 Calculating Item-Group Matching Scores. Based on the posi-
tive historical interaction sequenceH𝑝𝑜𝑠 of user 𝑢, we represent

Poster Session A3: Multimedia Search and Recommendation 
& Multimedia System and Middleware 

MM '20, October 12–16, 2020, Seattle, WA, USA 

3489



Algorithm 1 Interest Group Routing Algorithm.
Input:

User’s positive interaction sequenceH𝑝𝑜𝑠 ;
Matching scores P =

⋃𝑙0
𝑗=1 P𝑗 = {𝑝1←𝑗 , 𝑝2←𝑗 , ..., 𝑝𝑠←𝑗 };

Iteration number 𝜏 ;
Output:

Interest groups E =
⋃𝑠

𝑔=1 E𝑔 =
⋃𝑠

𝑔=1{𝑖
(𝑔)
1 , 𝑖

(𝑔)
2 , ..., 𝑖

(𝑔)
𝑙
};

1: for each 𝑖 𝑗 ∈ H𝑝𝑜𝑠 do
2: 𝑆 𝑗 = −1, E𝑆 𝑗

← ∅;
3: end for
4: for each iteration do
5: for each 𝑖 𝑗 ∈ H𝑝𝑜𝑠 do
6: 𝜉𝑔 = log𝑏 (𝑏 +max(avgE𝑔 − 𝑝𝑔←𝑗 , 0)), 𝑔 ∈ [1, 𝑠];
7: 𝑝

(𝑑)
𝑔←𝑗

= 𝑝𝑔←𝑗/𝜉𝑔 , 𝑔∗ = argmax
𝑔
(𝑝 (𝑑)

𝑔←𝑗
);

8: if 𝑔∗ ≠ 𝑆 𝑗 ∧ 𝑝 (𝑑)𝑔←𝑗
> 𝜖 then

9: E𝑆 𝑗
← POP(E𝑆 𝑗

, 𝑖 𝑗 ), 𝑆 𝑗 = 𝑔∗, E𝑔∗ ← ADD(E𝑔∗ , 𝑖 𝑗 )
10: end if
11: end for
12: end for
13: E𝑔

SortByTime
←−−−−−−−−− E𝑔 = {𝑖 (𝑔)1 , 𝑖

(𝑔)
2 , ..., 𝑖

(𝑔)
𝑙
}, 𝑔 ∈ [1, 𝑠];

14: return E =
⋃𝑠

𝑔=1 E𝑔

each micro-video 𝑗 inH𝑝𝑜𝑠 as an embedding vector 𝒙 𝑗 ∈ R𝑑 , where
𝑑 is the embedding size. And we pretrain a positive interest mem-
ory matrix 𝑴𝑢 ∈ R𝑠×𝑑 for user 𝑢, where 𝑠 denotes the number
of interest groups. Besides, we employ 𝒄𝑔 ∈ R𝑑 to represent the
interest group embedding in 𝑴𝑢 , i.e., 𝑴𝑢 = [𝒄1, 𝒄2, ..., 𝒄𝑔 , ..., 𝒄𝑠 ]𝑇 .

In order to calculate item-group matching scores, we utilize an
item-group co-attention network. Firstly, given the micro-video
embedding 𝒙𝒋 and the group embedding 𝒄𝑔 , we calculate the co-
attention matrix S ∈ R𝑙0×𝑠×𝑑 between the micro-video and the
interest group, where 𝑙0 = |H𝑝𝑜𝑠 | denotes the length of user’s
positive interaction sequence. Specifically, the entry 𝒔 𝑗,𝑔 of matrix
S is calculated by:

𝒔 𝑗,𝑔 =𝑾𝑠𝜎 (𝑾 𝑣𝒙 𝑗 + 𝒃𝑣 +𝑾𝑢𝒄𝑔 + 𝒃𝑢 ) + 𝒃𝑠 , (2)

where𝑾𝑠 ,𝑾 𝑣 ,𝑾𝑢 ∈ R𝑑×𝑑 are weight matrices, 𝒃𝑣 , 𝒃𝑢 , 𝒃𝑠 ∈ R𝑑
are biases, and 𝜎 : R ↦→ R is the element-wise activation function.
Based on this, the micro-video embedding 𝒙 𝑗 and group embedding
𝒄𝑔 are weighted by 𝒔 𝑗,𝑔 :{

𝒙 𝑗 = 𝒔 𝑗,𝑔 ⊙ 𝒙 𝑗 ,

𝒄𝑔 = 𝒔 𝑗,𝑔 ⊙ 𝒄𝑔 ,
(3)

where ⊙ is the element-wise product operation. And we get the
matching score 𝑝𝑔←𝑗 between micro-video 𝑗 and group 𝑔 by:

𝑝𝑔←𝑗 =𝑾ℎ
𝑝𝜎 (𝑾𝑙

𝑝 [𝒙𝒋 , 𝒄𝒈] + 𝒃𝑙𝑝 ) + 𝑏ℎ𝑝 , (4)

where 𝑾ℎ
𝑝 ∈ R𝑑 , 𝑾𝑙

𝑝 ∈ R𝑑×2𝑑 are weight matrices, 𝒃𝑙𝑝 ∈ R𝑑 ,
𝑏ℎ𝑝 ∈ R are biases, [·] is the concatenation operation, and 𝜎 (·) is the
element-wise activation function. The matching score 𝑝𝑔←𝑗 is one
of the inputs of our interest group routing algorithm, which is used
for the interest group assignments of the micro-video sequence.
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Figure 3: Illustration of the item-level temporal mask net-
work, which is used for exploring multi-scale time effects
on user interests and generating interest group representa-
tions.

4.1.2 Assigning Interest Groups. To assign interest groups based on
user’s interaction sequence, we propose an interest group routing
algorithm, which takes the matching scores between micro-videos
and groups as input and outputs the user interest group assignment
results. The process is detailed in Algorithm 1.

At first, we use the interest group pointer 𝑆 𝑗 to represent the
assigned group for each micro-video 𝑗 in H𝑝𝑜𝑠 , and initialize all
pointers 𝑆 𝑗 and group sets E𝑆 𝑗

before iterations (Line 2). As men-
tioned earlier, some false-positive interactions are mixed in the
user’s interaction sequence and interfere with user interest model-
ing. To address this problem, we introduce a discount factor 𝜉𝑔 to
filter out the false-positive interactions (Line 6), where 𝑎𝑣𝑔E𝑔 is the
average score of micro-videos in group 𝑔. In this way, we recalcu-
late matching scores 𝑝 (𝑑)

𝑔←𝑗
based on 𝑝𝑔←𝑗 and 𝜉𝑔 , and then select

the interest group 𝑔∗ with the highest matching score 𝑝 (𝑑)
𝑔←𝑗

as the
assignment target of the micro-video 𝑗 (Line 7). Afterwards, we
compare 𝑝 (𝑑)

𝑔←𝑗
with 𝜖 to make the next decision of interest group

assignment, where 𝜖 is a manually adjusted threshold (Line 8). If
the condition in Line 8 is true, we pop the micro-video 𝑗 from the
previous interest group set E𝑆 𝑗

and assign it to the new interest
group set E𝑔∗ (Line 9). After the iterations, we sort micro-videos
in each group according to their interaction timestamps (Line 13),
and return E =

⋃𝑠
𝑔=1 E𝑔 as the obtained interest groups (Line 14).

On the one hand, the proposed algorithm has the ability to gen-
erate fine-grained interest groups based on user’s interaction se-
quence. On the other hand, it handles false-positive interactions.
It is easy to understand that when we try to assign groups for the
micro-video that does not belong to the user interests, the discount
factor will largely decrease the matching scores, preventing it from
being assigned to any interest group and reducing its potential
detrimental effects on user interest modeling.
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In fact, some micro-video platforms provide category labels for
micro-videos. The reason why we do not directly adopt the cate-
gories is that they are not always available (such as micro-videos
uploaded by users without any category information). In addition,
extensive categories may produce many interest groups, while the
number of groups in the group routing algorithm is controllable.
The effective way to combine the category information and group-
ing algorithm could be explored in future work.

4.2 Item-level Temporal Mask Network
In order to capture multi-scale time effects and get representations
of each interest group, we introduce an item-level temporal mask
network, as shown in Figure 3, which learns group representations
based onmicro-video features. It takes the obtained groups of micro-
videos from the interest group routing unit (i.e., E =

⋃𝑠
𝑔=1 E𝑔 =⋃𝑠

𝑔=1{𝑖
(𝑔)
1 , 𝑖

(𝑔)
2 , ..., 𝑖

(𝑔)
𝑙
}) as input, and outputs the interest group

representations.
Many previous studies [2, 20, 40] have made a lot of efforts in

modeling the sequential information of user’s interaction sequence
for recommendation. However, for different users, time has various
effects on their interests. Previous studies ignore the case that
the importance of micro-videos decreases over time changes from
user to user, and we argue that the multi-scale time effects in user
interest modeling have not been explicitly considered. To address
this problem, we design an item-level temporal mask network to
explore multi-scale time effects on user interests. Specifically, the
parallel temporal masks are utilized to capture multiple temporal
information of user’s historical interactions.

Formally, we denote the embedding vector of the micro-video
in interest groups as Ē =

⋃𝑠
𝑔=1 Ē𝑔 =

⋃𝑠
𝑔=1{𝒙

(𝑔)
1 , 𝒙

(𝑔)
2 , ..., 𝒙

(𝑔)
𝑙
}. In

the 𝑘-th parallel temporal mask, we first calculate the attention
score 𝑄 (𝑘)

𝑖, 𝑗
among the micro-video pairs in group 𝑔 based upon the

following formula3:

𝑄
(𝑘)
𝑖, 𝑗

= (𝒙𝑖 )𝑇𝑾𝑘
𝑔𝒙 𝑗 , (5)

where 𝑘 and𝑾𝑘
𝑔 ∈ R𝑑×𝑑 denote the identifier of the 𝑘-th parallel

temporal mask and the weight matrix, respectively.
For the 𝑘-th parallel temporal mask, the element at each position

in the mask is calculated by the following formula:

𝑃
(𝑘)
𝑖, 𝑗

=

{
𝑒−(𝑖−𝑗)𝜔𝑘 𝑖 > 𝑗

0 𝑖 ≤ 𝑗,
(6)

where 𝑖 , 𝑗 are identifiers of the row and the column in the temporal
mask, respectively. 𝜔𝑘 denotes the coefficient in the 𝑘-th temporal
mask.

We design the temporal masks due to the following reasons: 1)
Motivated by [21], we choose an exponential form for the temporal
mask, which is able to describe the gradual decay of the importance
of past interactions as time goes. And 2) the exponential function
in the temporal mask can fit multiple importance decreases of
historical micro-videos with different parameters, and the parallel
temporal masks are able to explore multi-scale time effects on user
interest modeling.

3For simplicity, the interest group identifier is omitted here.
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Figure 4: Illustration of the group-level interest mask net-
work, which is used for aggregating fine-grained interest
groups and distilling the final user interest representations.

According to Formula 7, we obtain the interest group represen-
tation based on micro-video features. In the temporal mask, we use
the weighted sum of historical micro-video features to obtain the
current micro-video representation. Afterwards, each parallel mod-
ule aggregates all micro-video features in the group through a sum
pooling operation. We concatenate the output of each parallel mod-
ule, and then generate the group representation by a multi-layer
perception (MLP) network:

𝑀𝑘
𝑖,𝑗

= 𝑃
(𝑘)
𝑖, 𝑗

𝑄
(𝑘)
𝑖, 𝑗

,

𝒎𝑘
𝑖
=
∑𝑙

𝑗=1 𝑀
𝑘
𝑖,𝑗
𝒙 𝑗 ,

𝒓𝑘𝑔 =
∑𝑙
𝑖=1 𝒎

𝑘
𝑖
,

𝒓𝑔 = 𝑀𝐿𝑃 ( [𝒓1
𝑔 , 𝒓

2
𝑔 , ..., 𝒓

𝑘
𝑔 , ..., 𝒓

𝑝
𝑔 ]),

(7)

where 𝒎𝑘
𝑖
and 𝒓𝑘𝑔 denote the representation of micro-video 𝑖 and

interest group 𝑔 generated by 𝑘-th parallel temporal mask, respec-
tively. 𝑝 is the number of parallel modules, and 𝒓𝑔 denotes the final
group representation. In this way, we get the representation of each
interest group.

4.3 Group-level Interest Mask Network
Using the generated interest group representation, we next under-
stand user interest based on our proposed group-level interest mask
network. As illustrated in Figure 4, the network is used for aggregat-
ing fine-grained interest groups and distilling the final user interest
representations. Specifically, it takes the group representation 𝒓𝑔
as input, and outputs the user interest representation.

The design of this network has the following considerations: 1)
user interests can be divided into different interest groups. These
fine-grained group representations are combined with different
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weights to form user interest representations. 2) The information in
an interest group is always complicated and the implicit feedback
has noises [13]. As such, perhaps not all of the information in
the group is closely related to the interests of users. In order to
avoid poor recommendations caused by the useless information,
we introduce an interest mask to filter it out.

We have obtained the interest memory matrix 𝑴𝑢 = [𝒄1, 𝒄2, ...,
𝒄𝑝 , ..., 𝒄𝑠 ]𝑇 (Section 4.1.1) and the group representationsR = {𝒓1, ...,
𝒓𝑔 , ..., 𝒓𝑠 } (Section 4.2). We calculate the attention score 𝑤𝑝,𝑔 be-
tween memory vector 𝒄𝑝 and group representation 𝒓𝑔 as follows:

𝑤𝑝,𝑔 =
exp(𝒄𝑇𝑝𝑾ℎ𝒓𝑔 )∑𝑠

𝑔∗=1 exp(𝒄
𝑇
𝑝𝑾ℎ𝒓𝑔∗ )

, (8)

where𝑾ℎ is the trainable matrix. Next we introduce the group-level
filter factor 𝑤̂𝑝,𝑔 , which is defined as follows:

𝑤̂𝑝,𝑔 =
𝑚𝑎𝑥 (𝑤𝑝,𝑔 − 𝜏, 0)

𝑤𝑝,𝑔 − 𝜏
. (9)

where 𝜏 is a manually adjusted hyper parameter. From Formula 9,
we get an interest mask consisting of 𝑤̂𝑝,𝑔 with elements 0 and 1.
If 𝑤𝑝,𝑔 is greater than 𝜏 , 𝑤̂𝑝,𝑔 will be set to 1, otherwise 0. After
getting 𝑤̂𝑝,𝑔 , the group-level user interest representations of 𝑝-th
interest group are calculated as follows:

𝒉𝑝 =

𝑠∑
𝑔=1

𝑤̂𝑝,𝑔𝒓𝑔 . (10)

At last, the item-level user interest (i.e., 𝒓𝑝 ) and the group-level
user interest (i.e., 𝒉𝑝 ) are aggregated (e.g., sum pooling) to obtain
user representations of 𝑝-th interest group (i.e., 𝒄𝑝 ), which are
eventually added to the corresponding interest group in 𝑴𝑢 .

Note that the above method treats the positive interaction in
H𝑝𝑜𝑠 and the negative interaction inH𝑛𝑒𝑔 separately. In the above
discussion, we take the positive interaction as an example.

4.4 Model Prediction and Optimization
Given the user’s interest memory matrix 𝑴𝑢 and the new micro-
video’s embedding vector 𝒙𝑒 , we aggregate the memory vectors of
different interest groups in 𝑴𝑢 to get the user’s positive interest
representation 𝒒 by the sum pooling operation:

𝒒 = 𝑠𝑢𝑚𝑝𝑜𝑜𝑙𝑖𝑛𝑔
(
𝒄1, 𝒄2, ..., 𝒄𝑠

)
. (11)

We concatenate the user vector 𝒒 and the item vector 𝒙𝑒 together,
and then feed them into two MLP layers to calculate the prediction
score 𝑃 (𝒙𝑒 |H𝑝𝑜𝑠 ) based on the positive interaction sequence.

In the same way as calculating 𝑃 (𝒙𝑒 |H𝑝𝑜𝑠 ), we calculate the
prediction score 𝑃 (𝒙𝑒 |H𝑛𝑒𝑔 ) based on the negative interaction se-
quence [22], which aims to maximize the distance between the new
micro-video embedding and user’s negative interest features.

The final recommendation probability 𝑦𝑖 𝑗 is represented by the
linear combination of 𝑃 (𝒙𝑒 |H𝑝𝑜𝑠 ) and 𝑃 (𝒙𝑒 |H𝑛𝑒𝑔 ). And the objec-
tive function of our model is as follows:

L = −
∑
𝑖∈U

( ∑
𝑗 ∈H𝑖

𝑝𝑜𝑠

log𝜎 (𝑦𝑖 𝑗 ) +
∑

𝑗 ∈H𝑖
𝑛𝑒𝑔

log(1 − 𝜎 (𝑦𝑖 𝑗 ))
)
+ 𝜆 | |Θ| |22,

(12)

Table 1: Statistics of the datasets.

Datasets #Users #Micro-videos #Train Int. #Test Int. #Total Int.

MicroVideo-1.7M 10,986 1,704,880 8,970,310 3,767,309 12,737,619
KuaiShou-Dataset 10,000 3,239,534 10,931,092 2,730,291 13,661,383

where 𝑦𝑖 𝑗 denotes the prediction score of micro-video 𝑗 for user 𝑖 ,
𝜎 represents the sigmoid activation function, Θ refers to the set of
parameters to be regularized, and 𝜆 is the regularization factor.

5 EXPERIMENTS
In this section, we conduct experiments on two publicly available
datasets to evaluate the effectiveness of our proposed model. We
aim to answer the following research questions:
• RQ1: How does MTIN perform compared with the state-of-
the-art methods?
• RQ2: How do different feature aggregation methods affect
the performance of MTIN?
• RQ3:How do the designed interest memory matrix and user
interest group modeling affect the performance of MTIN?
• RQ4: Are the fine-grained user interests effective in MTIN?

5.1 Experimental Settings
Datasets. To evaluate the performance of our model, we conduct
experiments on two publicly available datasets: MicroVideo-1.7M
[2] and KuaiShou-Dataset [22]. In these two datasets, each micro-
video is associated with its visual features, and each interaction
consists of user ID, micro-video ID, and the relative timestamp. The
interactions between users and micro-videos are divided into posi-
tive interactions (i.e., the user clicks the micro-video) and negative
interactions (i.e., the user browses the thumbnail but does not click
it). Dataset settings (e.g., the division of the training set and the test
set) are based on the mainstream settings [2, 22]. And the statistics
of the datasets are summarized in Table 1.

Baselines.We consider the following methods for performance
comparison:
• BPR [28]. Bayesian personalized ranking uses the pairwise
ranking loss in the Bayesian approach to learn the relative
ranking of positive and negative items of each user.
• LSTM [40]. Long short-termmemory (LSTM) can be utilized
to model the sequential information, and we use the aggre-
gation of hidden states of each unit to form the user interest
representations.
• CNN.We implement the convolutional neural network (CNN)
to generate user interest representations based on the inter-
action sequence. The max pooling layer and MLP layers are
used for user interest extraction and prediction.
• NCF [9]. NCF is used to model the interactions between
latent features of users and items by replacing the inner
product with the neural architecture, which is able to learn
an arbitrary function from data.
• ATRank [42]. ATRank is an attention based recommenda-
tion framework, which projects all types of behavior into
multiple latent semantic spaces via a self-attention mecha-
nism to consider the heterogeneous user behaviors.
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Table 2: Overall Performance Comparison. The best results are highlighted in bold, and significant improvements over the
best baseline results are marked with † (t-test, p<0.01).

Methods
MicroVideo-1.7M KuaiShou-Dataset

AUC Precision@50 Recall@50 F1-score@50 AUC Precision@50 Recall@50 F1-score@50

BPR 0.583 0.241 0.181 0.206 0.595 0.290 0.387 0.331
LSTM 0.641 0.277 0.205 0.236 0.713 0.316 0.420 0.360
CNN 0.650 0.287 0.214 0.245 0.719 0.312 0.413 0.356
NCF 0.672 0.316 0.225 0.262 0.724 0.320 0.420 0.364
ATRank 0.660 0.297 0.221 0.253 0.722 0.322 0.426 0.367
THACIL 0.684 0.324 0.234 0.269 0.727 0.325 0.429 0.369
ALPINE 0.713 0.300 0.460 0.362 0.739 0.331 0.436 0.376
MTIN 0.729† 0.317 0.476† 0.381† 0.752† 0.341† 0.449† 0.388†

• THACIL [2]. THACIL utilizes temporal windows and the
multi-head self-attention to capture short-term and long-
term user interests for micro-video click-through prediction.
• ALPINE [22]. ALPINE models user’s dynamic and diverse
interests by a temporal graph-guided approach. In addition,
this method learns the enhanced representation of users by
considering multi-level user interests.

EvaluationMetrics and Parameter Settings. To evaluate our
proposed model, we adopt the evaluation metrics which are widely
used in previous work [36, 42], including the Area Under Curve
(AUC), Precision@K, Recall@K, and F1-measure@K. In our ex-
periments, we set K = 50 and report the average scores on the
test set. The user embedding and micro-video embedding are 128-
dimensional vectors. We set the number of parallel modules to 8,
the batch size to 32. The learning rate is set to 0.001, and the regu-
larization factor is 0.0001. The number of interest groups is set to 4
on KuaiShou-Dataset and 6 on MicroVideo-1.7M. We optimize the
parameters using Adam [18] optimizer.

5.2 Performance Comparison (RQ1)
The performance comparison of our model with the baselines on
MicroVideo-1.7M and KuaiShou-Dataset is shown in Table 2. From
the experimental results, we obtain the following observations:
• Ourmodel achieves the best performance on the two datasets.
Compared with ATRank, THACIL, and ALPINE, our model
considers the interest group routing process in user interest
modeling, and fine-grained user interest helps improve the
performance. Moreover, by introducing parallel temporal
masks, MTIN is capable of inferring multi-scale time effects
on user interests, which is lacking in previous methods such
as LSTM and CNN.
• BPR performs poorly on two datasets. LSTM consistently
outperform BPR, demonstrating the importance of modeling
the sequential information in user behaviors. NCF outper-
forms LSTM and CNN, which indicates the significance of
nonlinear feature interactions between user embeddings and
micro-video embeddings.
• User interestmodelingmethods (includingATRank, THACIL,
and ALPINE) are superior to previous methods. Specifically,
ATRank and THACIL show that the attention mechanism

is beneficial for capturing user preference from historical
interactions. And ALPINE performs better than THACIL,
which demonstrates the necessity of modeling dynamic and
diverse user interests. In addition, the modeling of multi-
level user interests in ALPINE also helps to improve the
model performance.

5.3 Study of Aggregation Methods (RQ2)
5.3.1 Effect of the Feature AggregationMethods. We explore
the effect of different feature aggregation methods of the item-level
and group-level user interest representations. Specifically, we adopt
three different feature aggregation methods, namely concatenation,
sum pooling, and their combination. The experimental results of
different feature aggregation methods on KuaiShou-Dataset are
shown in Table 3. From the experimental results, we observe that
the results of concatenation and sum pooling are lower than their
combination. This indicates that the sum pooling and concatenation
are not capable enough of exploring the competitive information
interchange of item-level and group-level interest representations.
And the combination of concatenation and sum pooling provides
more powerful capabilities to capture high-order feature interac-
tions and encode hidden relationships of user interests.

5.4 Study of MTIN (RQ3)
To evaluate the effectiveness of the interest memory matrix and
interest group modeling of our proposed model, we conduct the
ablation studies to compare MTIN with MTIN-P and MTIN-I. For
the model variant MTIN-P, we remove the design of our pretrained
interest memory matrix and only update it by group represen-
tations during the training process. And for the model variant
MTIN-I, we remove the user interest group modeling and only
make recommendations based on one positive interest group. We
show the experimental results of MTIN, MTIN-P, andMTIN-I on the
MicroVideo-1.7M dataset in Figure 5. According to the experimental
results, we have the following observations:

• MTIN performs better than MTIN-P in terms of AUC, Preci-
sion, Recall, and F1-score, which demonstrates the effective-
ness of our designed interest memory matrix. In our model,
we first calculate the matching scores of micro-videos and
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Table 3: Effect analysis of aggregation methods on KuaiShou-Dataset.

Aggregation Methods
TopK@10 TopK@50

AUC Precision@10 Recall@10 F1-score@10 Precision@50 Recall@50 F1-score@50

concatenation 0.7520 0.3932 0.1108 0.1728 0.3403 0.4478 0.3867
sum pooling 0.7519 0.3915 0.1106 0.1725 0.3402 0.4473 0.3865

concatenation + pooling 0.7524 0.3942 0.1111 0.1734 0.3414 0.4494 0.3880
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Figure 5: Illustration of the study of interest memory matrix and user interest group modeling of our model on MicroVideo-
1.7M dataset.

Figure 6: Heat map of the attention weights of each interest
group onMicroVideo-1.7Mdataset, which reflects the impor-
tance of different interest groups in expressing user interest.

interest groups based on the pretrained user interest mem-
ory matrix, and then learn the group representation of micro
videos and update the user interest memory matrix, which
makes MTIN achieve better performance.
• MTIN-I performs worse than MTIN, which indicates that
exploring fine-grained interest groups is necessary in user
interest modeling. From the experimental results of MTIN-
I, we observe that only one positive user interest group is
not sufficient to model various user interests, which makes
MTIN-I perform poorly.

5.5 Study of Interest Groups (RQ4)
One of the considerations of our model is that users have per-
sonalized interest groups, and we aggregate fine-grained interest
groups to extract user interest representations. In order to evaluate
whether our model has the ability to learn fine-grained user inter-
ests, we visualized the relative importance of each group in user
interest modeling on MicroVideo-1.7M dataset. Figure 6 presents

the heat map of attention weights of each group corresponding
to user interests, where different cases in the heat map represent
different users in the dataset. From this heat map, we observe that
in Case6, Group1, Group2 and Group4 have relatively dark colors,
indicating that these three groups are more appealing to User6. This
demonstrates that user interests are diverse and our model learns
fine-grained user interest groups in user modeling. In addition, we
observe that different users have different heat map distributions.
For example, User2 is not interested in Group3, while User3 shows
a strong interest in Group3, demonstrating that our model captures
the personalized user interests to form user representation.

6 CONCLUSION AND FUTUREWORK
In this work, we focus on exploring the personalized user interests
in micro-video recommendation. We propose MTIN, a multi-scale
time-aware user interest modeling framework, which learns user
interests from fine-grained interest groups. In particular, we incor-
porate the multi-scale time effects into user interests by time-aware
parallel masks, and introduce the group routing algorithm to per-
form group assignments. Furthermore, extensive experiments on
two publicly available datasets demonstrate that MTIN outperforms
the state-of-the-art methods.

Our work provides some new ways for future research on micro-
video recommender systems, such as exploring user social relation-
ships for group routing and user interest learning, and incorporating
micro-video semantics to understand user-item interactions. By
integrating these considerations into our work, we could make a
deeper understanding of user interests and establish more explain-
able and competitive recommender systems.
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