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ABSTRACT
With rising awareness of environment protection and recycling,
second-hand trading platforms have attracted increasing atten-
tion in recent years. The interaction data on second-hand trading
platforms, consisting of sufficient interactions per user but rare
interactions per item, is different from what they are on traditional
platforms. Therefore, building successful recommendation systems
in the second-hand trading platforms requires balancing modeling
items’ and users’ preference, and mitigating the adverse effects of
the sparsity, which makes recommendation especially challenging.
Accordingly, we proposed a method to simultaneously learn repre-
sentations of items and users from coarse-grained and fine-grained
features, and a multi-task learning strategy is designed to address
the issue of data sparsity. Experiments conducted on a real-world
second-hand trading platform dataset demonstrate the effectiveness
of our proposed model.

CCS CONCEPTS
• Information systems → Recommender systems; Hierarchi-
cal data models; Personalization; Multimedia and multimodal re-
trieval.
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Figure 1: A conceptual diagram of the typical business oper-
ation model on the second-hand trading platforms.

1 INTRODUCTION
With rising awareness of environment protection, people are in-
creasingly participating in activities that reduce ecological foot-
print through recycling. Therefore, the used and second-hand items
industries, which involve the transfer of second-hand items to sec-
ondary consumers, have attracted increasing attention in recent
years [4, 7–10, 20]. For example, a German online shop called Ubup1,
reported that the number of items it had sold has risen by 566%
since the beginning of 2014, and this shop had sold 1.5 million used
items in 2016. Besides, there are around 99 million users of resale-
focused apps as of August 2019, according to the data firm Getui2.
In addition, China Beijing Environment Exchange3 estimated that
transactions on Alibaba owned re-commerce platform “Idle Fish”
has helped to reduce 100,000 tons of carbon emissions between
2014 and 2018.

Compared to traditional trading platforms, second-hand trading
platforms are special. Specifically, for products of the same brand,
model and style, if they come from different sellers, they will be
treated as different items due to reasons like different conditions.
Figure 1 is the conceptual figure of the typical business operation
model in the second-hand trading platform. Sellers take pictures of
items they want to sell and list them on the second-hands trading
platform. Meanwhile, buyers will search for items of interest on

1www.ubup.com.
2www.getui.com.
3www.cbeex.com.cn.
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the platform. When buyers purchase the desired items, sellers will
receive notifications from the platform and send the items to buyers.
After buyers receive the items, the platform will pay the sellers to
complete the entire transactions. In this case, items in the second-
hand trading platform are usually unique, therefore, they bring
more challenges in the task of item recommendations: First, the
number of the same items is usually only one, and most have been
interacted with few users (e.g., in the second-hand trading platform
dataset we worked on in this paper, more than ninety-nine percent
of items have only been interacted with by less than five people).
Therefore, the challenge is how to utilize the sparse interaction
data that most of them would be filtered out in the preprocessing
stage of traditional methods, which would lead to the removal of
most of the data in our settings. Second, different sellers list similar
items in the second-hand trading platforms, and these items are
usually regarded as the same thing in traditional trading platforms.
Without available explicit feedback, we argue that it is useful to
apply visual descriptions and hierarchical categories of items, to
represent these items which may be the same style but are regarded
as different for conditions or other reasons. Hence, it brings another
challenge that how to utilize visual information and hierarchical
category data reasonably and effectively.

Existing studies investigate the above problems in regular item
recommendation scenarios, and the most common way is to filter
out low-frequent items or users during preprocessing stage [18,
21, 28, 30]. However, it is not suitable for second-hand platforms
because sparse interaction is one of the prominent characteristics of
second-hand trading platforms, and therefore most items in second-
hand trading platforms will be filtered out under this method. In this
sense, the problemwe tackled here comes from a typical multimodal
scenario; whereas the traditional recommendation methods do not
work in this scenario. Meanwhile, several previous studies [17, 21]
argued that the category hierarchy information is able to learn more
robust visual representations of items. Specifically, these studies
focus on the combination of category hierarchy and visual features
while they ignore relationships in category hierarchy, which is
valuable as well.

In this paper, we propose a novel method to simultaneously learn
representations of items and user preferences using visual features
and hierarchical categories meanwhile reinforce the relationships
among items and users to distinguish items. Additionally, we pro-
pose a multi-task learning strategy to address the data sparsity
problem.

Our contributions are as follows:

• We propose a novel method that simultaneously learns repre-
sentations of items and user preferences using visual features
and hierarchical categories, which utilizes the hierarchical
category information to enhance the relationship among
items or users for better latent representation learning.

• We design a multi-task learning strategy of “recommending
items to users” and “identifying potential users to items” to
further improve the recommendation performance regarding
to the problem of data sparsity.

• Wequantitatively evaluated ourmodel on a real-world second-
hand trading platform dataset. Experimental results demon-
strate the effectiveness of our model.

• We additionally applied our proposed multi-task learning
strategy to several state-of-the-art methods, and they all
achieve great improvement, demonstrating the effectiveness
of our proposed multi-task learning strategy.

The rest of this paper is structured as follows. In Section 2, we
briefly review the related literature. In Section 3, we detail our
proposed model, followed by experimental results and analyses in
Section 4. We finally conclude the work in Section 5.

2 RELATEDWORK
In this section, we mainly review the studies that are most related to
our work, including representation learning for recommendation,
and sparsity problems in recommendation systems.

2.1 Representation Learning
Learning representations of items is an important step in recom-
mendation systems [17, 18, 21, 30–32]. He et al. [18] proposed a
scalable method that incorporates visual features into Matrix Fac-
torization to uncover the “visual dimensions” that can influence
people’s behavior. He et al. [17] also proposed another sparse hier-
archical embedding method that simultaneously reveals globally-
relevant and subtle visual dimensions efficiently. However, in the
second-hand trading platform, the number of interactions related
to each item is very small. Under this circumstance, learning latent
factors for each item in the above methods will cause overfitting.
Meanwhile, a few research work [17, 21] try to utilize additional
category information to learn more accurate representations of
items. Specifically, Liu et al. [21] proposed to obtain style features
by subtracting categorical information from visual features. He et
al. [17] introduced hierarchical category information into visual
feature learning. These work inspires our initial idea, though they
did not consider the relationships among hierarchical categories as
what we do in this paper.

Compared to item representations which are usually refined
using various specially designed models, in most previous work [17,
18, 21, 30], user preferences are often learned in a similar way with a
trainable embedding matrix. In addition, several researchers further
apply attention mechanism to help learn user preferences [12, 13,
34, 35].

Apart from item representations and user preferences, various
types of interaction data are also utilized by researchers to train
models [11, 13, 28, 35]. Among those attempts to learn from inter-
actions, there is a kind of methods based on graph-based neural
networks achieves great success. Wang et al. [29] proposed the
newly embedding propagation layer to leverage high-order connec-
tivities in the user-item integration graph. He et al. [19] argued the
unnecessarily complicated design of graph convolutional networks
and proposed LightGCN which consists of light graph convolution
and layer combination. Wu et al. [33] explored the simplest possible
formulation of a graph convolutional model. These models learn
high-order representations of items and users with interaction data.
However, in the second-hand platforms, the average number of oc-
currences of items in the interaction data is very small, whichmakes
the user-item integration graph too sparse to support operations in
GCNs [23].



2.2 Sparsity in Recommendation System
Sparsity problem is one of the major problems encountered by rec-
ommendation systems, and the data sparsity has a great impact on
the quality of the recommendation [1]. Several attempts have been
made to mitigate the negative effects of sparse data [2, 15, 24–26].
Pazzani et al. [24] alleviated the problem of sparse user interaction
by introducing additional information of users. Rawat et al. [25]
utilized additional contextual information to address the sparsity
problem. And Salakhutdinov et al. [26] utilized item based mining
retrieval technique to make models perform well on sparse data.
Billsus et al. [2] applied Singular Value Decomposition to reduce
the dimensionality of sparse rating matrices. Guo et al. [15] reduced
the sparsity of items by pre-training the model with constructed
data. In addition, Guo et al. [14] presented a Mahalanobis distance
and a deep neural network method to effectively model the linear
and non-linear correlations between features, which can incorpo-
rate side information to overcome the cold-start and data sparsity
problems. Despite that there is certain amount of work focusing on
solving the sparsity problem, the level of sparsity in their work is
different from what we are facing now. They usually first filter out
items and users that appear less than five times at preprocessing
step, which will lead to the removal of most of the data in our
settings.

3 OUR PROPOSED METHOD
3.1 Problem Setting and Model Overview
3.1.1 Problem setting. Before describing our method, we introduce
the problem setting first. Formally, let 𝑼 and 𝑰 denote the set of
users and items respectively. Each user 𝑢 ∈ 𝑼 had interactions (e.g.,
click, like, or purchase) with a set of items 𝑰𝑢 ⊂ 𝑰 . Each item 𝑖 ∈ 𝑰
is associated with a path 𝑪𝑖 = {𝑪1

𝑖
, 𝑪2
𝑖
, 𝑪3
𝑖
, . . . , 𝑪𝑚

𝑖
} on a category

hierarchy from the root (i.e., the first level as the highest level)
category to a leaf (i.e., the m-th level as the lowest level) category,
where𝑚 denotes the number of levels in the category hierarchy
of all items, and 𝑪𝑘

𝑖
is the parent category of 𝑪𝑘−1

𝑖
. In addition,

each item 𝑖 is associated with a visual feature vector 𝒇vis
𝑖

∈ R𝑑𝑣𝑖𝑠
extracted from a pre-trained convolutional neural network, where
𝑑vis represents the dimensions of visual features. Our goal is to
learn a personalized item recommendation model, which could rec-
ommend items to each user 𝑢 ∈ 𝑼 appropriately based on personal
preference.

3.1.2 Model overview. Sparsity is one of the prominent character-
istics of second-hand platforms. If the recommendation model treat
each item as an individual and learn a latent factor for each item,
it will severely suffer from the overfitting problem because each
item appears rarely in the interaction history. In order to tackle
this problem, as shown in Figure 2, we utilized the hierarchical
category information to enhance the relationship among items or
users for their latent representation learning. We also designed
a multi-task learning strategy of “recommending items to users”
and “identifying potential users to items” to further improve the
recommendation performance.

3.2 Latent Representation Learning
3.2.1 Item latent representation learning. When a user interacts
with items on second-hand trading platforms, what s/he actually
needs determines the coarse-grained of items (e.g., type, etc.) s/he
will interact with. Meanwhile, the fine-grained characteristics (e.g.,
appearance, condition, etc.) of those items will influence which
specific items of in the same type s/he will prefer. Based on this
intuition, we propose to learn the latent representations of items by
combining the coarse-grained features and the fine-grained features.
Specifically, in this paper, we adopt hierarchical category features
as the coarse-grained features, and utilize visual comprehensive
features that are learned both from visual features and category
information as the fine-grained features.

Although the continuous linear transformation and learning
an embedding vector for each category have little difference in
mathematical principles, we believe it that our proposed method
can better learn the characteristics of categories from the whole
instead of focusing on each category independently.

To make fully use of the hierarchical relationships among cat-
egories, we learn the relationships between adjacent hierarchical
categories instead of learning independent features for each cate-
gory 𝑐 . Specifically, we learn an embedding vector 𝒆base𝑐 ∈ R𝑑cate
for each first-level category 𝑐 ∈ 𝑪1, where 𝑑cate represents the
dimension of category feature. We also learn an embedding matrix
𝑾cat
𝑐 ∈ R𝑑cat×𝑑cat for each rest categories 𝑐 ∈ 𝑪\𝑪1, which models

the relationship between this category 𝑐 and 𝛾 (𝑐), where 𝛾 (𝑐) repre-
sents the parent category of the category 𝑐 . And then we can obtain
representations 𝒆cat𝑐 ∈ R𝑑cat for each category 𝑐 ∈ 𝑪 as follows:

𝒆cat𝑐 =

{
𝒆base𝑐 , 𝑐 ∈ 𝑪1

𝑾cat
𝑐 𝒆cat

𝛾 (𝑐) , 𝑐 ∉ 𝑪1 , (1)

To learn the fine-grained visual comprehensive features, in addi-
tion to visual features, we also utilize the lowest-level (the 1𝑠𝑡 -level
category corresponds to the highest-level category) category of
items in the hierarchy instead of the whole hierarchical category
information which are adopted in previous work [17]. The formula-
tions of visual comprehensive features 𝒆vis

𝑖
are defined as follows:

𝒆vis𝑖 =𝑾 item
𝛿 (𝑖)𝒇

vis
𝑖 + 𝒃 item

𝛿 (𝑖) , (2)

where 𝛿 (𝑖) represents the lowest-level category of the item 𝑖 ∈ 𝑰 ,
𝑾 item
𝑐 represents the visual-category conjunction matrix for items

from category 𝑐 , 𝒇vis
𝑖

represents each item’s visual feature vec-
tor, and 𝒃 item𝑐 represents the visual-category bias vector of items
from category 𝑐 . And the reasons we only apply the lowest-level
categories are: 1) the lowest-level category actually implies the in-
formation of the upper categories, and 2) the tasks using upper-level
categories are actually much more difficult than the tasks using
lower-level categories, because using the upper-level categories
will lead to the loss of detailed category information.

Finally, we can obtain the latent representations 𝒆item
𝑖

of the
item 𝑖 ∈ 𝑰 by concatenating the category representations of its
hierarchical categories and its visual comprehensive feature. The
formulations are defined as follows:

𝒆item𝑖 = 𝒆cat
𝑪1
𝑖

⊕ 𝒆cat
𝑪2
𝑖

⊕ . . . ⊕ 𝒆cat𝑪𝑚𝑖
⊕ 𝒆vis𝑖 , (3)
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Figure 2: An overview of the proposed framework for personalized item recommendation in secend-hand trading platforms.

where𝑚 denotes the number of levels in the category hierarchy
of all items, 𝑪 𝑗

𝑖
represents the 𝑗-level hierarchical category of item

𝑖 ∈ 𝑰 , and ⊕ indicates the operation of concatenating. We adopt this
method to fuse the coarse-grained hierarchical category features
and the fine-grained visual comprehensive features of items.

3.2.2 User latent representation learning. Similar to the representa-
tions of items, for users, we also consider the user preference from
the two aspects of what they actually need and which specific items
of the same kinds they will prefer. Based on this idea, we learn
an embedding vector 𝒑k

𝑢 to model each user’s preference on each
hierarchical category which indicates what the user needs. We also
learn an embedding vector 𝒑vis

𝑢 to model each user’s preference on
the fine-grained characteristics of items. In addition, considering
that the same person may show different preferences in different
categories of items, we apply embedding vector 𝒃user𝑐 to model the
bias in users’ preferences on specific category 𝑐 . Then preference
on item 𝑖 for user 𝑢 can be calculated as follows:

𝒑user
𝑢,𝑖 = 𝒑1

𝑢 ⊕ 𝒑2
𝑢 ⊕ ... ⊕ 𝒑m

𝑢 ⊕ (𝒑𝑣𝑖𝑠𝑢 + 𝒃𝑢𝑠𝑒𝑟
𝛿 (𝑖) ), (4)

where𝑚 denotes the number of levels in the category hierarchy
of all items, 𝒑1

𝑢 ,𝒑
2
𝑢 , ...,𝒑

m
𝑢 represent the user’s preferences on each

hierarchical category, 𝒑𝑣𝑖𝑠𝑢 represents the user’s preference on the
fine-grained visual comprehensive features, 𝒃𝑢𝑠𝑒𝑟𝑐 represents the
bias in users’ preferences on specific category 𝑐 , 𝛿 (𝑖) represents the
lowest-level category of the item 𝑖 , and ⊕ indicates the operation
of concatenation.

Besides, we also apply additional embedding vectors to model
the impacts of users’ preference on viewing items, and we denote
the impact of the preference of user 𝑢 as 𝒑bias

𝑢 . And then we can
obtain the personalized item representations of item 𝑖 for each user
𝑢 ∈ 𝑼 as follows:

𝒆̃ item
𝑖,𝑢 = 𝒆item𝑖 + 𝒑bias

𝑢 . (5)

3.3 Multi-task Learning for Item
Recommendation

After the previous steps, we obtain the representations of users and
items in the same latent space. we can get user’s recommendation
score for an item by calculating the inner product between the
preference representations of user and item:

𝑠𝑐𝑜𝑟𝑒 (𝑢, 𝑖) = 𝒑user
𝑢,𝑖 ◦ 𝒆̃ item

𝑖,𝑢 , (6)

where ◦ represents the inner product operation. Then we consider
the problem from the following two perspectives of recommending
items to users and identifying potential users to items.

3.3.1 Recommending items to users. In this perspective, we treat
our task as a traditional recommended task. In other words, what
we need to do is to recommend suitable items to users. We adopt
a modified pairwise-based learning method for optimization. In
this method, we construct triples < 𝑢, 𝑖+, 𝑖− > for training based
on existing data where 𝑢 and 𝑖+ correspond to the user and one of
the interacted items. And for each positive item 𝑖+, we additionally
randomly sample several items 𝑖− as negative items which have
not been interacted with by user 𝑢 in the same type of behavior
history.

Specifically, for each positive item that has been actually in-
teracted with by a user, we will sample items that have not been
interacted with by this user as negative items. The negative items
are from different categories while share the same parent category
with this positive item, or items in the same lowest-level category
of this positive item. In this way, we can balance the differences
among different categories and the differences among items in the
same categories when training models.



The objective function can be formulated as follows:

J1 =
∑
𝑢,𝑖

ln
(
1 + 𝑒score(u,i

−)−score(u,i+)
)
+ 𝜆1∥𝜃 ∥2, (7)

where 𝑠𝑐𝑜𝑟𝑒 (𝑢, 𝑖) represents the recommendation score of the user
𝑢 ∈ 𝑼 for the item 𝑖 ∈ 𝑰 , 𝜃 denotes all the parameters to be estimated
in our model, and 𝜆1 is a hyper-parameter to control the power of
regularization.

3.3.2 Identifying potential users to items. In the second-hand plat-
form, most items have only been interacted by very few users. In
this case, the recommendation task is difficult, because there is not
enough data to learn a suitable representation for all items. How-
ever, by analyzing the data, we found out that most items have been
only interacted by a very small number of users, but most users
have interacted with many items (e.g., in our sampledMen’s dataset,
which will be introduced in the next section, each item is interacted
by only 1.56 people on average, while each user has interacted with
330.69 items on average). In other words, we have enough data
for each user to learn his preference’s representations, so that the
task of identifying potential users to items may be much easier
than the original task of recommending items to users. Therefore
in this perspective, we treat the interacted users as labels for items,
and classify items with multiple labels (i.e., users). The objective
function can be formulated as follows:

J2 =
∑
𝑢

∑
𝑖∈𝐼𝑢

− ln
(

exp (score(u, i))∑
𝑗 exp (score(u, j))

)
+ 𝜆2∥𝜃 ∥2, (8)

where 𝑠𝑐𝑜𝑟𝑒 (𝑢, 𝑖) represents the recommendation score of the user
𝑢 for the item 𝑖 , 𝜃 denotes all the parameters to be estimated in
our model, and 𝜆2 is a hyper-parameter to control the power of
regularization.

3.3.3 Multi-task learning for item recommendation. Although the
objective functions of the above two tasks are different, their pur-
poses are both to make actually interacted user-item pairs obtain
higher recommendation scores than the uninteracted ones. There-
fore, we apply the idea of multi-task learning to learn the two tasks
at the same time so that the representations of users and items can
be learnt better and easier than with single task. The final objective
function is defined as:

J = 𝛽1J1 + 𝛽2J2, (9)

where 𝛽1 and 𝛽2 are hyper-parameters as coefficients of J1 and J2.

3.4 Personalized Item Recommendation
Given users as queries, the model will first calculate general latent
representations of users and items, and then calculate the recom-
mendation scores among the queried users and items, finally take
out the items with the Top-K scores and recommend them to users.

4 EXPERIMENTS
In this section, we conduct experiments on real-world datasets to
evaluate the performance of our proposed methods.

4.1 Datasets
We evaluate our model on one of the largest available second-hand
trading platform datasets which called the Mercari dataset. The

Table 1: Statistics of the Mercari datasets.

Dataset #(Users) #(Items) #(Interactions)

Men 1,000 212,487 330,690
Women 1,000 267,597 532,246
Kids 1,000 56,628 117,554
Mix 400 200,731 355,264

Artworks 1,000 82,320 133,020

Mercari dataset contains metadata from Mercari Inc.4, including
509,838 users, 55,615,152 items, and user behaviors spanning from
November 2016 to October 2018. Specifically, it includes user in-
formation (ID and status), item metadata (item ID, seller ID, price,
brand, category, condition, size, description, and status), item ship-
ping information (methods, from area, duration, and payer), and
user behaviors (liked, listed, purchased, and clicked). Meanwhile,
there is a three-level category tree associated with Mercari dataset.
Figure 2 shows part of the category hierarchy. It has 13 1𝑠𝑡 -level
categories, 149 2𝑛𝑑 -level categories, and 1,233 3𝑟𝑑 -level categories.
There is also a visual feature vector 𝐹 𝑣𝑖𝑠

𝑖
∈ R2048 extracted from

ResNet [16] associated with each item in this dataset.
We consider the data of the categories of Men, Women and Kids

from the Mercari dataset. The items of these categories mainly
consist of clothes and shoes, which are the same with the dataset
in previous work [17]. Apart from studying these three categories
separately, we also combine them together and denote it as “Mix”
to explore whether the use of richer hierarchical information will
affect the overall recommendation performances. Meanwhile, we
consider the category of Artwork. Compared with the aforemen-
tioned categories, Artwork has its own characterstics: the scope of
is wider, the content is more abstract, and there are more variances
among items. We would like to evaluate whether and how our
model can capture user’s preference on these items.

To make experiments more feasible, we sample a subset of the
dataset while keeping the original data distribution roughly un-
changed. Specifically, we first randomly sample 1,000 users for the
categories of Men, Women, Kids and Artwork. We also randomly
sample 400 users for the sub-dataset of Mix. And then we select
the items that have been interacted by the selected users, and all
the interaction data related to the selected users and items. The
statistics of the five sampled sub-datasets are shown in Table 1.

4.2 Evaluation Protocol and Parameter Settings
We randomly split each sampled sub-dataset into training, valida-
tion, and testing sets with 8:1:1 ratio as the same in previous work
[3, 5, 6]. We evaluate the performance of different models using
Accuracy [27, 30], NDCG, AUC, and F1 score as the evaluation
metrics defined as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝐾 =
∑
𝑢∈𝑈

Ind
[
(H𝑢,𝐾 ∩G𝑢 ) ≠ ∅

]
|𝑈 | , (10)

𝑁𝐷𝐶𝐺@𝐾 =
∑
𝑢∈𝑈

{
𝐾∑
𝑡

Ind
[
𝐻𝑢,𝐾,𝑡 ∈ 𝐺𝑢

]
|𝑈 | log2 (1 + 𝑡 )

/
K∑
𝑡

Ind [𝑡 ≤ |𝐺𝑢 | ]
|𝑈 | log2 (1 + 𝑡 )

} (11)

4www.mercari.com



Table 2: Performance comparison among our model and all fully-trained baselines using Accuracy.

Model Men Women Kids Mix Artworks
@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

VBPR 0.000 0.000 0.000 0.003 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
VBPR-I 0.026 0.049 0.090 0.028 0.041 0.057 0.011 0.027 0.049 0.042 0.063 0.100 0.065 0.085 0.109
VBPR-II 0.064 0.095 0.141 0.028 0.062 0.096 0.059 0.092 0.141 0.084 0.109 0.146 0.093 0.153 0.190
Sherlock 0.013 0.023 0.028 0.010 0.023 0.047 0.011 0.027 0.049 0.054 0.100 0.126 0.004 0.008 0.008
Sherlock-I 0.097 0.146 0.169 0.083 0.119 0.158 0.108 0.168 0.222 0.176 0.226 0.276 0.097 0.153 0.206
Sherlock-II 0.179 0.235 0.302 0.217 0.264 0.328 0.211 0.243 0.292 0.272 0.356 0.385 0.198 0.234 0.290
DeepStyle 0.003 0.008 0.018 0.021 0.047 0.057 0.043 0.054 0.059 0.021 0.033 0.075 0.000 0.000 0.000
Deepstyle-I 0.069 0.097 0.133 0.067 0.080 0.106 0.092 0.151 0.200 0.126 0.172 0.230 0.101 0.141 0.161
Deepstyle-II 0.110 0.161 0.248 0.114 0.150 0.222 0.195 0.232 0.276 0.184 0.264 0.351 0.149 0.198 0.258
OurModel-S 0.118 0.153 0.207 0.098 0.140 0.181 0.146 0.189 0.227 0.180 0.251 0.310 0.125 0.165 0.206
OurModel 0.210 0.266 0.309 0.243 0.295 0.336 0.222 0.281 0.335 0.293 0.360 0.393 0.210 0.262 0.339

%Improv.(vs. Variant-Is) 116.5% 82.2% 82.8% 192.8% 147.9% 112.7% 105.6% 67.3% 50.9% 66.5% 59.3% 42.4% 107.9% 71.2% 64.6%
%Improv.(vs. all models) 17.3% 13.2% 2.3% 12.0% 11.7% 2.4% 5.2% 15.6% 14.7% 7.7% 1.1% 2.1% 6.1% 12.0% 16.9%

Table 3: Performance comparison among our model and all fully-trained baselines using AUC.

Model Men Women Kids Mix Artworks
@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

VBPR 0.000 0.000 0.000 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
VBPR-I 0.017 0.027 0.047 0.015 0.025 0.034 0.007 0.013 0.026 0.022 0.030 0.052 0.040 0.053 0.064
VBPR-II 0.044 0.062 0.087 0.024 0.033 0.055 0.036 0.058 0.083 0.046 0.065 0.091 0.060 0.088 0.113
Sherlock 0.008 0.010 0.016 0.004 0.009 0.021 0.011 0.014 0.022 0.029 0.048 0.072 0.001 0.004 0.004
Sherlock-I 0.051 0.081 0.110 0.056 0.072 0.096 0.053 0.093 0.135 0.106 0.137 0.163 0.052 0.082 0.115
Sherlock-II 0.108 0.148 0.190 0.136 0.174 0.216 0.115 0.153 0.194 0.158 0.215 0.255 0.119 0.155 0.184
Deepstyle 0.000 0.003 0.009 0.016 0.024 0.035 0.026 0.036 0.047 0.013 0.014 0.032 0.000 0.000 0.000
Deepstyle-I 0.043 0.061 0.081 0.041 0.055 0.063 0.057 0.081 0.120 0.066 0.088 0.130 0.068 0.085 0.104
Deepstyle-II 0.064 0.095 0.131 0.069 0.096 0.132 0.108 0.159 0.195 0.096 0.144 0.199 0.100 0.132 0.166
OurModel-S 0.064 0.091 0.126 0.059 0.082 0.106 0.073 0.114 0.143 0.110 0.155 0.192 0.069 0.097 0.122
OurModel 0.120 0.168 0.209 0.149 0.188 0.231 0.131 0.178 0.231 0.176 0.235 0.271 0.119 0.163 0.205

%Improv.(vs. Variant-Is) 135.3% 107.4% 90.0% 166.1% 161.1% 140.6% 129.8% 91.4% 71.1% 66.0% 71.5% 66.3% 75.0% 91.8% 78.3%
%Improv.(vs. all models) 11.1% 13.5% 10.0% 9.6% 8.0% 6.9% 13.9% 11.9% 18.5% 11.4% 9.3% 6.3% 0.0% 5.2% 11.4%

𝐴𝑈𝐶@𝐾 =
∑
𝑢∈𝑈

∑𝐾−1
𝑡1=1

∑𝐾
𝑡2=𝑡1+1Ind

[ (
𝐻𝑢,𝐾,𝑡1 ∈𝐺𝑢

)
∧
(
𝐻𝑢,𝐾,𝑡2 ∉𝐺𝑢

) ]
|𝑈 | ×

��𝐻𝑢,𝐾 ∩𝐺𝑢
�� × (

𝐾 −
��𝐻𝑢,𝐾 ∩𝐺𝑢

��) /2 (12)

𝐹1@𝐾 =2/
[

|𝑈 |∑
𝑢∈𝑈

(��𝐻𝑢,𝐾 ∩𝐺𝑢
��/𝐾 ) + |𝑈 |∑

𝑢∈𝑈
(��𝐻𝑢,𝐾 ∩𝐺𝑢

��/|𝐺𝑢 |)
]

(13)

where 𝑼 represents the set of users, 𝐻𝑢,𝐾 represents the set of
Top-K items that the model predicts (i.e., recommends) to user 𝒖,
𝐺𝑢 represents the set of items that user 𝒖 actually interacted with,
Ind( [·]) indicates Indicator function, and the numerator in the
Equation 10 represents whether someone actually interacts with
items that are recommended by the model.

To train our proposed model, we randomly initialize model pa-
rameters with a Gaussian distribution and utilize AdamW [22]
algorithm for optimization. We further restrict the length of final
representation vector of users or items in each model to be the
same for fair comparison. We set the hyper-parameters 𝛽1 and 𝛽2
to 0.75 and 0.25, respectively. We have tried different parameter
settings, including the batch size of {64, 128, 256}, the latent feature
dimension of {32, 64, 128}, the learning rate of {0.1, 0.3, 0.01, 0.003,
0.001}. As the findings are consistent across the dimensions of la-
tent vectors, if not specified, we only report the results based on
dimension of 128, which gives relatively good performance.

4.3 Baselines
To evaluate the effectiveness of our model, we compared our pro-
posed method with several state-of-the-art baselines.

• VBPR [18]: This baseline introduces visual information into
the recommendation system for the first time, and incorpo-
rates visual features into Matrix Factorization to uncover the
“visual dimension” that plays a crucial role in influencing
users’ behavior.

• Sherlock [17]: It is a sparse hierarchical embedding method
to uncover the visual dimensions of users’ opinions on top of
raw visual features. Sherlock utilizes different layers on the
category hierarchy to simultaneously learn both general and
subtle information hidden in categories and vision. The sim-
ilarity scores are obtained by calculating the inner product
of users’ opinion embedding and obtained item embedding
for recommendation.

• DeepStyle [21]: This baseline learns style features by sub-
tracting categorical information from visual features, and
make recommendations with the obtained style features.

• Variant-I (i.e., VBPR-I, Sherlock-I, DeepStyle-I): These vari-
ants remove the modules for learning each item’s latent
factors from corresponding original models. To be specific,
the item representations learnt in all baseline models (VBPR,



Table 4: Performance comparison among our model and all fully-trained baselines using NDCG.

Model Men Women Kids Mix Artworks
@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

VBPR 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
VBPR-I 0.009 0.009 0.010 0.008 0.007 0.007 0.003 0.003 0.003 0.012 0.012 0.011 0.018 0.016 0.016
VBPR-II 0.024 0.023 0.023 0.017 0.018 0.018 0.017 0.017 0.018 0.025 0.024 0.022 0.043 0.041 0.039
Sherlock 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.006 0.007 0.014 0.016 0.016 0.001 0.001 0.001
Sherlock-I 0.030 0.029 0.025 0.028 0.026 0.023 0.029 0.027 0.026 0.060 0.056 0.052 0.035 0.037 0.036
Sherlock-II 0.055 0.051 0.048 0.086 0.074 0.067 0.060 0.055 0.054 0.111 0.104 0.095 0.071 0.065 0.063
Deepstyle 0.001 0.001 0.001 0.006 0.006 0.005 0.010 0.009 0.008 0.006 0.006 0.007 0.000 0.000 0.000
Deepstyle-I 0.022 0.019 0.018 0.023 0.019 0.017 0.026 0.025 0.025 0.042 0.043 0.041 0.040 0.039 0.034
Deepstyle-II 0.036 0.034 0.036 0.039 0.038 0.037 0.062 0.056 0.053 0.069 0.069 0.069 0.068 0.061 0.059
OurModel-S 0.033 0.032 0.029 0.029 0.027 0.024 0.039 0.037 0.036 0.067 0.062 0.055 0.042 0.040 0.038
OurModel 0.061 0.056 0.050 0.076 0.069 0.061 0.069 0.063 0.061 0.119 0.105 0.095 0.078 0.070 0.070

%Improv.(vs. Variant-Is) 103.3% 93.1% 100.0% 171.4% 165.4% 165.2% 137.9% 133.3% 134.6% 98.3% 87.5% 82.7% 95.0% 79.5% 94.4%
%Improv.(vs. all models) 10.9% 9.8% 4.2% -11.6% -6.8% -9.0% 11.3% 12.5% 13.0% 7.2% 1.0% 0.0% 9.9% 7.7% 11.1%

Table 5: Performance comparison among our model and all fully-trained baselines using F1 score.

Model Men Women Kids Mix Artworks
@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20

VBPR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
VBPR-I 0.005 0.005 0.006 0.004 0.004 0.004 0.000 0.001 0.002 0.001 0.002 0.004 0.006 0.007 0.008
VBPR-II 0.015 0.015 0.014 0.010 0.010 0.010 0.012 0.012 0.012 0.011 0.011 0.012 0.020 0.025 0.028
Sherlock 0.000 0.001 0.002 0.000 0.000 0.001 0.002 0.004 0.004 0.002 0.005 0.008 0.000 0.000 0.001
Sherlock-I 0.012 0.015 0.014 0.008 0.010 0.011 0.009 0.013 0.019 0.010 0.015 0.021 0.013 0.019 0.024
Sherlock-II 0.024 0.028 0.031 0.038 0.041 0.040 0.034 0.034 0.035 0.037 0.044 0.048 0.036 0.040 0.043
Deepstyle 0.000 0.001 0.001 0.000 0.001 0.002 0.006 0.006 0.004 0.001 0.002 0.002 0.000 0.000 0.000
Deepstyle-I 0.008 0.009 0.011 0.006 0.006 0.007 0.013 0.016 0.017 0.005 0.011 0.015 0.015 0.021 0.021
Deepstyle-II 0.019 0.021 0.026 0.020 0.023 0.024 0.040 0.036 0.033 0.027 0.031 0.041 0.038 0.037 0.039
OurModel-S 0.012 0.018 0.020 0.009 0.012 0.014 0.021 0.023 0.024 0.011 0.016 0.021 0.018 0.022 0.026
OurModel 0.025 0.033 0.033 0.033 0.038 0.039 0.040 0.040 0.038 0.042 0.046 0.048 0.041 0.044 0.050

%Improv.(vs. Variant-Is) 108.3% 120.0% 135.7% 312.5% 280.0% 254.5% 207.7% 150.0% 100.0% 320.0% 206.7% 128.6% 173.3% 109.5% 108.3%
%Improv.(vs. all models) 4.2% 17.9% 6.5% -13.2% -7.3% -2.5% 0.0% 11.1% 8.6% 13.5% 4.5% 0.0% 7.9% 10.0% 16.3%

Sherlock and DeepStyle) come from two kinds of informa-
tion: visually relevant and visually irrelevant ones. Due to the
extreme sparsity issue in the second-hand trading platform
dataset, learning visually irrelevant information (which is
item’s latent factors) will usually result in overfitting. There-
fore, we remove this information from their corresponding
original models for Variant-I.

• Variant-II (i.e., VBPR-II, Sherlock-II, DeepStyle-II): These
variants additionally apply proposed multi-task learning
strategy on the basis of their corresponding models with
Variant-I.

• OurModel-S: This variant removes proposedmulti-task learn-
ing strategy from the origin proposed model.

4.4 Performances, Quantitative Analysis and
Ablation Study

For each dataset, we evaluate all fully-trained models using the
metric Accuracy@K, AUC@K, NDCG@K and F1@K where K={5,
10, 15}. We report the results of different methods using different
metrics in Table 2, Table 3, Table 4, and Table 5. Since the main task
of our work is to recommend items to users, we only report results
of this task. We have the following observations with respect to
our experimental results.

First, our proposed method achieves the best performance across
all the five sub-datasets using Accuracy and AUC, and also achieves
the best performance on four sub-datasets except Women using
NDCG and F1 score, demonstrating the effectiveness of our model.
In other words, OurModel does not achieve better performance
than Sherlock-II on sub-datasetWomen. The possible reasons we
analyzed are that Sherlock-II pays more attention to the influence of
visual features than OurModel, and the coarse-grained features ex-
tracted in OurModel are only related to categories, which strength-
ens the influence of category information, while visual influences
may be more dominant than category information for the items
in the category Women, resulting in the limited performance of
OurModel.

Second, all the original models (i.e., VBPR, Sherlock, DeepStyle)
perform very poorly on all the five second-hand platform sub-
datasets, showing a very obvious phenomenon of overfitting. Be-
sides, after removing the modules for learning each item’s latent
factors from their corresponding original models, Variant-Is out-
perform the original models (e.g., Sherlock obtains 0.023 on Men’s
sub-dataset using Accuracy@10, while Sherlock-I obtains 0.146 on
the same dataset), demonstrating the effectiveness of the strategy
that we should not learn latent factors for each item separately to
avoid overfitting when data is very sparse.



Third, compared with the Variant-Is, OurModel-S (i.e., our pro-
posed model without multi-task learning strategy) still performs
well, verifying the effectiveness of our modeling items and users’
preferences using visual features and hierarchical categories.

Moreover, compared with the Variant-Is, we notice that the
Variant-IIs using multi-task learning strategy all achieve great im-
provement across all the five sub-datasets (e.g., DeepStyle-I obtains
0.092 on Kids’s sub-dataset using Accuracy@5, while DeepStyle-II
obtains 0.195 on the same dataset), demonstrating the strategy that
identifying potential users to items is effective and make fully use
of the special sparsity.

Finally, we find that all models achieve obviously improvements
on Mix’s sub-dataset (e.g., OurModel obtains 0.243 on Women’s
sub-dataset using Accuracy@5, while it obtains 0.293 on Mix’s
sub-dataset). The reason for this phenomenon is that the 1𝑠𝑡 -level
categories of items in this dataset make an effective and positive
effect on models, while the 1𝑠𝑡 -level categories of items in other
datasets are all the same (i.e., do not have impacts on modeling).

5 CONCLUSION
With rising awareness of environment protection and recycling,
second-hand trading platforms have attracted increasing attention
in recent years. Considering the unique features of second-hand
platforms, the key to construct a successful recommendation sys-
tem is to obtain comprehensive representations of item and user
preference, and tackle the data sparsity problem. In this paper, we
proposed a method to simultaneously learn representations of items
and users using visual features and hierarchical categories, and de-
sign a multi-task learning strategy for the data sparsity problem.
We evaluated our model for personalized item recommendation
tasks on a real-world second-hand trading platform dataset. The
experiment results show that our proposed model outperforms the
state-of-the-art baselines. In addition, we also conducted ablation
studies, demonstrating the effectiveness of our proposed represen-
tation learning components and the multi-task learning strategy,
respectively.
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